Skip to content
All EucFACE datasets are held in a Western Sydney University repository and are made publicly available on publication. Below you will find links to the major published datasets.

The EucFACE data policy can be read here. Enquiries regarding access to unpublished data should be directed to Vinod Kumar.

Carbon balance

Data from: Jiang, M., Crous, K.Y., Carrillo, Y. et al. Microbial competition for phosphorus limits the CO2 response of a mature forest. Nature 630, 660–665 (2024). https://doi.org/10.6084/m9.figshare.25596213.v3

Data from: Jiang, M., Medlyn, B.E., Drake, J.E. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).
https://figshare.com/articles/dataset/EucFACE_carbon_budget_data_repository/11634315/1

Data from: Ellsworth, D., Anderson, I., Crous, K. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Clim Change 7, 279–282 (2017).
https://research-data.westernsydney.edu.au/published/e724be30519311ecb15399911543e199/                                                                                        
Data from: Renchon, A. A., Drake, J. E., Macdonald, C. A., Sihi, D., Hinko-Najera, N., Tjoelker, M. G., et al. (2021). Concurrent measurements of soil and ecosystem respiration in a mature eucalypt woodland: Advantages, lessons, and questions. Journal of Geophysical Research: Biogeosciences, 126, e2020JG006221. https://figshare.com/articles/dataset/Simultaneous_measurements_of_soil_and_ecosystem_respiration_in_a_mature_Eucalypt_woodland_advantages_lessons_and_questions/12357449/1

These data are also available in the COSORE database: Bond-Lamberty, B, Christianson, DS, Malhotra, A, et al. COSORE: A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data. Glob Change Biol. 2020; 26: 7268– 7283. https://doi.org/10.1111/gcb.15353

Data from: Duursma, R, Gimeno T, Boer M, Crous KY, Tjoelker MG, Ellsworth DS. 2016. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Global Change Biology 22: 1666-1676.
https://research-data.westernsydney.edu.au/published/0236d3c0519411ecb15399911543e199/       

Pineiro J, Ochoa-Hueso R, Drake JE, Tjoelker MG, Power SA, (2020) ‘Water availability drives fine root dynamics in a Eucalyptus woodland under elevated atmospheric CO2 concentration’, Functional Ecology, vol.34, no.11, pp 2389-2402
https://datadryad.org/stash/dataset/doi:10.5061/dryad.fttdz08qp

Water balance

Data from: Gimeno, TE, McVicar, TR, O’Grady, AP, Tissue, DT, Ellsworth, DS. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob Change Biol. 2018; 24: 3010– 3024.
https://research-data.westernsydney.edu.au/published/e76a0490519311ecb15399911543e199/                                                                                        
Data from: Gimeno, T.E., Crous, K.Y., Cooke, J., O’Grady, A.P., Ósvaldsson, A., Medlyn, B.E. and Ellsworth, D.S. (2016), Conserved stomatal behaviour under elevated CO2 and varying water availability in a mature woodland. Funct Ecol, 30: 700-709. https://research-data.westernsydney.edu.au/published/ffccd8a0519311ecb15399911543e199/                                                            
Data from: Griebel, A., Boer, M. M., Blackman, C., Choat, B., Ellsworth, D. S., Madden, P., Medlyn, B., Resco de Dios, V., Wujeska-Klause, A., Yebra, M., Younes Cardenas, N., & Nolan, R. H. (2023). Specific leaf area and vapour pressure deficit control live fuel moisture content. Functional Ecology, 37, 719– 731. https://doi.org/10.26183/bf6d-kh20                                                                                                                                                                   

Understorey and soils data

Data from: Nielsen, U. N., Bristol, D., Blyton, M., Delroy, B., & Powell, J. R. (2024). Elevated CO2 enhances decomposition and modifies litter-associated fungal assemblages in a natural Eucalyptus woodland. Functional Ecology, 00, 1–14. https://doi.org/10.5281/zenodo.11108026

Data from: Raúl Ochoa-Hueso, Rani Carroll, Juan Piñeiro, Sally A Power, Understorey plant community assemblage of Australian Eucalyptus woodlands under elevated CO2 is modulated by water and phosphorus availability, Journal of Plant Ecology, Volume 14, Issue 3, June 2021, Pages 478–490.
https://doi.org/10.6084/m9.figshare.13664399.v1                                                                                                            

Data from: Hasegawa, S, Piñeiro, J, Ochoa-Hueso, R, et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. 2018; 106: 1483– 1494.
https://figshare.com/articles/dataset/FACE_UNCOM_201209-201602_zip/5835216/3                              

Data from: Collins, L, Bradstock, RA, Resco de Dios, V, Duursma, RA, Velasco, S, Boer, MM. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2]. Glob Change Biol. 2018; 24: 2366– 2376.
https://figshare.com/articles/dataset/Understorey_biomass_and_cover_data_for_the_EucFACE_experiment_between_20140801_-_20170331/5721079                      

Data from: Castañeda-Gómez, L, Powell, JR, Ellsworth, DS, Pendall, E, Carrillo, Y. The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low-phosphorus Eucalyptus forest under elevated CO2. Funct Ecol. 2021; 35: 2056– 2071.
https://doi.org/10.6084/m9.figshare.14558070.v1                 

Data from: Ochoa-Hueso, R, Piñeiro, J, Power, SA. Decoupling of nutrient cycles in a Eucalyptus woodland under elevated CO2. J Ecol. 2019; 107: 2532– 2540.
https://figshare.com/articles/dataset/Decoupling_of_nutrient_cycles_in_a_Eucalyptus_woodland_under_elevated_CO2/8197520/1